Random walks of a quantum particle on a circle
نویسنده
چکیده
When the quantum planar rotor is put on a lattice its dynamics can be approximated by random walks on a circle. This allows for fast and accurate Monte Carlo simulations to determine the topological charge of different configurations of the system and thereby the B dependence of the lowest energy levels.
منابع مشابه
Open Quantum Random Walks
A new model of quantum random walks is introduced, on lattices as well as on finite graphs. These quantum random walks take into account the behavior of open quantum systems. They are the exact quantum analogue of classical Markov chains. We explore the “quantum trajectory” point of view on these quantum random walks, that is, we show that measuring the position of the particle after each times...
متن کاملNoninteracting multiparticle quantum random walks applied to the graph isomorphism problem for strongly regular graphs
We investigate the quantum dynamics of particles on graphs (“quantum random walks”), with the aim of developing quantum algorithms for determining if two graphs are isomorphic (related to each other by a relabeling of vertices). We focus on quantum random walks of multiple noninteracting particles on strongly regular graphs (SRGs), a class of graphs with high symmetry that is known to have pair...
متن کاملRandom Walk in an Alcove of an Affine Weyl Group, and Non-colliding Random Walks on an Interval
Abstract. We use a reflection argument, introduced by Gessel and Zeilberger, to count the number of k-step walks between two points which stay within a chamber of a Weyl group. We apply this technique to walks in the alcoves of the classical affine Weyl groups. In all cases, we get determinant formulas for the number of k-step walks. One important example is the region m > x1 > x2 > · · · > xn ...
متن کاملDiffusive-ballistic crossover in 1D quantum walks.
We show that particle transport, as characterized by the equilibrium mean square displacement, in a uniform, quantum multibaker map, is generically ballistic in the long time limit, for any fixed value of Planck's constant. However, for fixed times, the semiclassical limit leads to diffusion. Random matrix theory provides explicit analytical predictions for the mean square displacement of a par...
متن کاملHistory Dependent Quantum Random Walks as Quantum Lattice Gas Automata
Quantum Random Walks (QRW) were first defined as one-particle sectors of Quantum Lattice Gas Automata (QLGA). Recently, they have been generalized to include history dependence, either on previous coin (internal, i.e., spin or velocity) states or on previous position states. These models have the goal of studying the transition to classicality, or more generally, changes in the performance of q...
متن کامل